LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Role of human glutathione transferases in biotransformation of the nitric oxide prodrug JS-K

Nitric oxide (NO) plays a prominent physiological role as a low-molecular-mass signal molecule involved in diverse biological functions. Great attention has been directed to pharmacologically modulating the release of NO… Click to show full abstract

Nitric oxide (NO) plays a prominent physiological role as a low-molecular-mass signal molecule involved in diverse biological functions. Great attention has been directed to pharmacologically modulating the release of NO for various therapeutic applications. We have focused on O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K) as an example of diazeniumdiolate prodrugs with potential for cancer chemotherapy. JS-K is reportedly activated by glutathione conjugation by glutathione transferase (GST), but the scope of activities among the numerous members of the GSTome is unknown. We demonstrate that all human GSTs tested except GST T1-1 are active with JS-K as a substrate, but their specific activities are notably spanning a > 100-fold range. The most effective enzyme was the mu class member GST M2-2 with a specific activity of 273 ± 5 µmol min−1 mg−1 and the kinetic parameters Km 63 µM, kcat 353 s−1, kcat/Km 6 × 106 M−1 s−1. The abundance of the GSTs as an ensemble and their high catalytic efficiency indicate that release of NO occurs rapidly in normal tissues such that this influence must be considered in clarification of the tumor-killing effect of JS-K.

Keywords: human glutathione; role human; glutathione transferases; role; nitric oxide

Journal Title: Scientific Reports
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.