LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reducing the nanoparticles generated at the wheel–rail contact by applying tap water lubricant at subway train operational velocities

Photo by a2eorigins from unsplash

The formation characteristics and the reduction of nanoparticles emitted from wheel–rail contacts at subway-train velocities of 73, 90, and 113 km/h under dry and water-lubricated conditions (using tap water) were… Click to show full abstract

The formation characteristics and the reduction of nanoparticles emitted from wheel–rail contacts at subway-train velocities of 73, 90, and 113 km/h under dry and water-lubricated conditions (using tap water) were studied using a twin-disk rig. The resulting number concentration (NC) of ultrafine and fine particles increased with train velocity under both conditions. Particle generation varied with slip rate under both conditions in both the particle categories. Furthermore, the formation characteristics at 113 km/h under dry conditions showed a notable deviation from those under water-lubricated conditions in three aspects: (i) The maximum NC of ultrafine particles was higher than that of fine particles, (ii) the predominant peak diameter was in the ultrafine particles category, and (iii) the proportion of ultrafine particles was much higher than those of the fine particles. Applying water decreased the NC of ultrafine and fine particles significantly at all tested velocities (by 54–69% and 87–91%, respectively). Adding water increased the NC of particles ≤ 35 nm in diameter, possibly owing to the increase in water vapor and mineral crystals from tap water. Overall, this study provides a reference for researchers aiming to minimize nanoparticle formation at the wheel–rail contacts by applying a lubricant.

Keywords: tap water; water; wheel rail; subway train; fine particles; ultrafine particles

Journal Title: Scientific Reports
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.