This study aims to investigate the associative and multivariate relationship between different sociodemographic and clinical variables with cortical excitability as indexed by transcranial magnetic stimulation (TMS) markers in subjects with… Click to show full abstract
This study aims to investigate the associative and multivariate relationship between different sociodemographic and clinical variables with cortical excitability as indexed by transcranial magnetic stimulation (TMS) markers in subjects with chronic pain caused by knee osteoarthritis (OA). This was a cross-sectional study. Sociodemographic and clinical data were extracted from 107 knee OA subjects. To identify associated factors, we performed independent univariate and multivariate regression models per TMS markers: motor threshold (MT), motor evoked potential (MEP), short intracortical inhibition (SICI), intracortical facilitation (ICF), and cortical silent period (CSP). In our multivariate models, the two markers of intracortical inhibition, SICI and CSP, had a similar signature. SICI was associated with age (β: 0.01), WOMAC pain (β: 0.023), OA severity (as indexed by Kellgren–Lawrence Classification) (β: − 0.07), and anxiety (β: − 0.015). Similarly, CSP was associated with age (β: − 0.929), OA severity (β: 6.755), and cognition (as indexed by the Montreal Cognitive Assessment) (β: − 2.106). ICF and MT showed distinct signatures from SICI and CSP. ICF was associated with pain measured through the Visual Analogue Scale (β: − 0.094) and WOMAC (β: 0.062), and anxiety (β: − 0.039). Likewise, MT was associated with WOMAC (β: 1.029) and VAS (β: − 2.003) pain scales, anxiety (β: − 0.813), and age (β: − 0.306). These associations showed the fundamental role of intracortical inhibition as a marker of adaptation to chronic pain. Subjects with higher intracortical inhibition (likely subjects with more compensation) are younger, have greater cartilage degeneration (as seen by radiographic severity), and have less pain in WOMAC scale. While it does seem that ICF and MT may indicate a more acute marker of adaptation, such as that higher ICF and MT in the motor cortex is associated with lesser pain and anxiety.
               
Click one of the above tabs to view related content.