Therapeutic approach for NAFLD is limited and there are no approved drugs. Pioglitazone (PGZ), a thiazolidinedione (TZD) that acts via peroxisome proliferator activated receptor gamma (PPAR γ ) is the… Click to show full abstract
Therapeutic approach for NAFLD is limited and there are no approved drugs. Pioglitazone (PGZ), a thiazolidinedione (TZD) that acts via peroxisome proliferator activated receptor gamma (PPAR γ ) is the only agent that has shown consistent benefit and efficacy in clinical trials. However, the mechanism of its therapeutic effect on NAFLD remains unclear. The poor understanding may be due to problems with mouse, a species most used for animal experiments. TZDs exacerbate fatty liver in mouse models while they improve it in rat models like in human patients. Therefore, we compared the effects of TZDs including PGZ and rosiglitazone (RGZ) in ob/ob mice and Lep mkyo /Lep mkyo rats, models of leptin-deficient obesity, and A-ZIP/F-1 mice and seipin knockout (SKO) rats, models of generalized lipodystrophy. Pparg mRNA expression was markedly upregulated in fatty livers of mouse models while it was unchanged in rat models. TZDs exacerbated fatty liver in ob/ob and A-ZIP/F-1 mice, improved it in Lep mkyo /Lep mkyo rats and showed no effect in SKO rats. Gene expression analyses of Pparg and its target gene, Fsp27 revealed that PPAR γ in the adipose tissue is the exclusive therapeutic target of TZDs in rats but PPAR γ in the liver in addition to the adipose tissue is also a major site of actions for TZDs in mice. Although the response to TZDs in mice is the complete opposite of that in human patients, no report has pointed out the problem with TZD studies using mouse models so far. The present study might provide useful suggestions in research on TZDs.
               
Click one of the above tabs to view related content.