LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genetic diversity and mate selection in a reintroduced population of gray wolves

Photo by brittaniburns from unsplash

The genetic composition of an individual can markedly affect its survival, reproduction, and ultimately fitness. As some wildlife populations become smaller, conserving genetic diversity will be a conservation challenge. Many… Click to show full abstract

The genetic composition of an individual can markedly affect its survival, reproduction, and ultimately fitness. As some wildlife populations become smaller, conserving genetic diversity will be a conservation challenge. Many imperiled species are already supported through population augmentation efforts and we often do not know if or how genetic diversity is maintained in translocated species. As a case study for understanding the maintenance of genetic diversity in augmented populations, I wanted to know if genetic diversity (i.e., observed heterozygosity) remained high in a population of gray wolves in the Rocky Mountains of the U.S. > 20 years after reintroduction. Additionally, I wanted to know if a potential mechanism for such diversity was individuals with below average genetic diversity choosing mates with above average diversity. I also asked whether there was a preference for mating with unrelated individuals. Finally, I hypothesized that mated pairs with above average heterozygosity would have increased survival of young. Ultimately, I found that females with below average heterozygosity did not choose mates with above average heterozygosity and wolves chose mates randomly with respect to genetic relatedness. Pup survival was not higher for mated pairs with above average heterozygosity in my models. The dominant variables predicting pup survival were harvest rate during their first year of life and years pairs were mated. Ultimately, genetic diversity was relatively unchanged > 20 years after reintroduction. The mechanism for maintaining such diversity does not appear related to individuals preferentially choosing more genetically diverse mates. Inbreeding avoidance, however, appears to be at least one mechanism maintaining genetic diversity in this population.

Keywords: diversity; population gray; heterozygosity; gray wolves; genetic diversity

Journal Title: Scientific Reports
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.