LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Large-scale preparation of Co nanoparticles as an additive in carbon fiber for microwave absorption enhancement in C band

Photo from wikipedia

Recent studies have found that the core–shell structured metal nanoparticles and porous carbon nanofibers (PCNF) are combined into a microwave absorbing material through electrospinning, which exhibits excellent microwave absorption performance.… Click to show full abstract

Recent studies have found that the core–shell structured metal nanoparticles and porous carbon nanofibers (PCNF) are combined into a microwave absorbing material through electrospinning, which exhibits excellent microwave absorption performance. In this study, the core–shell structure Co nanoparticles prepared by the self-developed HEIBE process (production rate of > 50 g/h) were combined with porous carbon fibers, and their absorbing properties were greatly improved. The morphology of Co/PCNF demonstrated that CoNPs are randomly dispersed in the porous carbon nanofibers and carbon nanofiber form complex conductive network which enhances the dielectric loss of the materials. Meanwhile, the Co/PCNF has a low graphitization and shows a significant improvement in permittivity due to the combination of CoNPs and high conductivity of carbon material. The maximum reflection loss (RL) of Co/PCNF reaches − 63.69 dB at 5.28 GHz with a thickness of 5.21 mm and the absorption bandwidth (RL ≤  − 10.0 dB) is 12.92 GHz. In terms of 5.60 mm and 6.61 mm absorber, there are two absorption peaks of − 47.64 dB and − 48.30 dB appear around 12.50 GHz and 14.10 GHz, respectively. The results presented in this paper may pave a way for promising applications of lightweight and high-efficiency microwave absorbing materials (MAMs).

Keywords: absorption; large scale; carbon; microwave absorption; scale preparation; porous carbon

Journal Title: Scientific Reports
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.