LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of a novel hyaluronic acid membrane for the treatment of ocular surface diseases

Photo from wikipedia

Ocular surface diseases (OSD) can cause serious visual deterioration and discomfort. Commercial artificial tear solution containing hyaluronic acid (HA) show excellent biocompatibility and unique viscoelastic characteristics. Here, we developed a… Click to show full abstract

Ocular surface diseases (OSD) can cause serious visual deterioration and discomfort. Commercial artificial tear solution containing hyaluronic acid (HA) show excellent biocompatibility and unique viscoelastic characteristics. Here, we developed a novel HA membrane (HAM) by chemical crosslinking using 1,4-butanediol diglycidyl ether for the effective treatment of OSDs. The main purpose of HAMs is to provide sustained release of HA to modulate the wound healing response in OSDs. The safety and efficacy of HAMs were investigated using primary cultured human corneal epithelial cells and various OSD rabbit models. In the dry state, the HAM is firm, transparent, and easy to manipulate. When hydrated, it swells rapidly with high water retention and over 90% transmission of visible light. Human corneal epithelial cells and rabbit eyes showed no toxic response to HAM. Addition of HAMs to the culture medium enhanced human corneal epithelial cell viability and expression of cell proliferation markers. Investigation of HAM wound healing efficacy using mechanical or chemical corneal trauma and conjunctival surgery in rabbits revealed that application of HAMs to the ocular surface enhanced healing of corneal epithelium and reduced corneal limbal vascularization, opacity and conjunctival fibrosis. The therapeutic potential of HAMs in various OSDs was successfully demonstrated.

Keywords: corneal; ocular surface; surface; surface diseases; hyaluronic acid

Journal Title: Scientific Reports
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.