LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Coherent amplification and inversion less lasing of surface plasmon polaritons in a negative index metamaterial with a resonant atomic medium.

Photo from wikipedia

Surface plasmon polaritons (SPPs) lasing requires population inversion, it is inefficient and possesses poor spectral properties. We develop an inversion-less concept for a quantum plasmonic waveguide that exploits unidirectional superradiant… Click to show full abstract

Surface plasmon polaritons (SPPs) lasing requires population inversion, it is inefficient and possesses poor spectral properties. We develop an inversion-less concept for a quantum plasmonic waveguide that exploits unidirectional superradiant SPPĀ (SSPP) emission of radiation to produce intense coherent surface plasmon beams. Our scheme includes a resonantly driven cold atomic medium in a lossless dielectric situated above an ultra-low loss negative index metamaterialĀ (NIMM) layer. We propose generating unidirectional superradiant radiation of the plasmonic field within an atomic medium and a NIMM layer interface and achieve amplified SPPs by introducing phase-match between the superradiant SPP wave and coupled laser fields. We also establish a parametric resonance between the weak modulated plasmonic field and the collective oscillations of the atomic ensemble, thereby suppressing decoherence of the stably amplified directional polaritonic mode. Our method incorporates the quantum gain of the atomic medium to obtain sufficient conditions for coherent amplification of superradiant SPP waves, and we explore this method to quantum dynamics of the atomic medium being coupled with the weak polaritonic waves. Our waveguide configuration acts as a surface plasmon laser and quantum plasmonic transistor and opens prospects for designing controllable nano-scale lasers for quantum and nano-photonic applications.

Keywords: inversion; medium; plasmon polaritons; surface plasmon; atomic medium

Journal Title: Scientific reports
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.