LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A deep learning model for detection of cervical spinal cord compression in MRI scans

Photo from wikipedia

Magnetic Resonance Imaging (MRI) evidence of spinal cord compression plays a central role in the diagnosis of degenerative cervical myelopathy (DCM). There is growing recognition that deep learning models may… Click to show full abstract

Magnetic Resonance Imaging (MRI) evidence of spinal cord compression plays a central role in the diagnosis of degenerative cervical myelopathy (DCM). There is growing recognition that deep learning models may assist in addressing the increasing volume of medical imaging data and provide initial interpretation of images gathered in a primary-care setting. We aimed to develop and validate a deep learning model for detection of cervical spinal cord compression in MRI scans. Patients undergoing surgery for DCM as a part of the AO Spine CSM-NA or CSM-I prospective cohort studies were included in our study. Patients were divided into a training/validation or holdout dataset. Images were labelled by two specialist physicians. We trained a deep convolutional neural network using images from the training/validation dataset and assessed model performance on the holdout dataset. The training/validation cohort included 201 patients with 6588 images and the holdout dataset included 88 patients with 2991 images. On the holdout dataset the deep learning model achieved an overall AUC of 0.94, sensitivity of 0.88, specificity of 0.89, and f1-score of 0.82. This model could improve the efficiency and objectivity of the interpretation of cervical spine MRI scans.

Keywords: mri scans; deep learning; model; cord compression; learning model; spinal cord

Journal Title: Scientific Reports
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.