LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flexible, high mobility short-channel organic thin film transistors and logic circuits based on 4H–21DNTT

Photo from wikipedia

The low mobility and large contact resistance in organic thin-film transistors (OTFTs) are the two major limiting factors in the development of high-performance organic logic circuits. Here, solution-processed high-performance OTFTs… Click to show full abstract

The low mobility and large contact resistance in organic thin-film transistors (OTFTs) are the two major limiting factors in the development of high-performance organic logic circuits. Here, solution-processed high-performance OTFTs and circuits are reported with a polymeric gate dielectric and 6,6 bis (trans-4-butylcyclohexyl)-dinaphtho[2,1-b:2,1-f]thieno[3,2-b]thiophene (4H–21DNTT) for the organic semiconducting layer. By optimizing and controlling the fabrication conditions, a high saturation mobility of 8.8 cm 2  V −1  s −1 was demonstrated as well as large on/off ratios (> 10 6 ) for relatively short channel lengths of 15 μm and an average carrier mobility of 10.5 cm 2  V −1  s −1 for long channel length OTFTs (> 50 μm). The pseudo-CMOS inverter circuit with a channel length of 15 μm exhibited sharp switching characteristics with a high signal gain of 31.5 at a supply voltage of 20 V. In addition to the inverter circuit, NAND logic circuits were further investigated, which also exhibited remarkable logic characteristics, with a high gain, an operating frequency of 5 kHz, and a short propagation delay of 22.1 μs. The uniform and reproducible performance of 4H–21DNTT OTFTs show potential for large-area, low-cost real-world applications on industry-compatible bottom-contact substrates.

Keywords: short channel; mobility; thin film; logic circuits; film transistors; organic thin

Journal Title: Scientific Reports
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.