LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Discovery of proton hill in the phase space during interactions between ions and electromagnetic ion cyclotron waves

Photo from wikipedia

A study using Arase data gives the first observational evidence that the frequency drift of electromagnetic ion cyclotron (EMIC) waves is caused by cyclotron trapping. EMIC emissions play an important… Click to show full abstract

A study using Arase data gives the first observational evidence that the frequency drift of electromagnetic ion cyclotron (EMIC) waves is caused by cyclotron trapping. EMIC emissions play an important role in planetary magnetospheres, causing scattering loss of radiation belt relativistic electrons and energetic protons. EMIC waves frequently show nonlinear signatures that include frequency drift and amplitude enhancements. While nonlinear growth theory has suggested that the frequency change is caused by nonlinear resonant currents owing to cyclotron trapping of the particles, observational evidence for this has been elusive. We survey the wave data observed by Arase from March, 2017 to September 2019, and find the best falling tone emission event, one detected on 11th November, 2017, for the wave particle interaction analysis. Here, we show for the first time direct evidence of the formation of a proton hill in phase space indicating cyclotron trapping. The associated resonance currents and the wave growth of a falling tone EMIC wave are observed coincident with the hill, as theoretically predicted.

Keywords: cyclotron; proton hill; ion cyclotron; hill; hill phase; electromagnetic ion

Journal Title: Scientific Reports
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.