Experimental detection of the Pt 5d densities of states in the valence band is conducted on a series of Pt-Ni alloys by high energy resolution valence-to-core X-ray emission spectroscopy (VTC-XES)… Click to show full abstract
Experimental detection of the Pt 5d densities of states in the valence band is conducted on a series of Pt-Ni alloys by high energy resolution valence-to-core X-ray emission spectroscopy (VTC-XES) at the Pt L3-edge. VTC-XES measurements reveal that the Pt d-band centroid shifts away from the Fermi level upon dilution, accompanied by concentration-dependent Pt d-band width. The competition between the strain effect and ligand effect is observed experimentally for the first time. It is found that the d-band widths in Pt3Ni and PtNi are broader than that of Pt metal due to compressive strain which overcompensates the effect of dilution, while it is narrower in PtNi3 where the ligand effect dominates. VTC-XES is demonstrated to be a powerful tool to study the Pt d-band contribution to the valence band of Pt-based bimetallic. The implication for the enhanced activity of Pt-Ni catalysts in oxygen reduction reaction is discussed.
               
Click one of the above tabs to view related content.