The objective was to evaluate the sequentially updated predictive capacity for preeclampsia during pregnancy, using multivariable longitudinal models including data from antenatal care. This population-based cohort study in the Stockholm-Gotland… Click to show full abstract
The objective was to evaluate the sequentially updated predictive capacity for preeclampsia during pregnancy, using multivariable longitudinal models including data from antenatal care. This population-based cohort study in the Stockholm-Gotland Counties, Sweden, included 58,899 pregnancies of nulliparous women 2008–2013. Prospectively collected data from each antenatal care visit was used, including maternal characteristics, reproductive and medical history, and repeated measurements of blood pressure, weight, symphysis-fundal height, proteinuria, hemoglobin and blood glucose levels. We used a shared-effects joint longitudinal model including all available information up until a given gestational length (week 24, 28, 32, 34 and 36), to update preeclampsia prediction sequentially. Outcome measures were prediction of preeclampsia, preeclampsia with delivery < 37, and preeclampsia with delivery ≥ 37 weeks’ gestation. The area under the curve (AUC) increased with gestational length. AUC for preeclampsia with delivery < 37 weeks’ gestation was 0.73 (95% CI 0.68–0.79) at week 24, and increased to 0.87 (95% CI 0.84–0.90) in week 34. For preeclampsia with delivery ≥ 37 weeks’ gestation, the AUC in week 24 was 0.65 (95% CI 0.63–0.68), but increased to 0.79 (95% CI 0.78–0.80) in week 36. The addition of routinely collected clinical measurements throughout pregnancy improve preeclampsia prediction and may be useful to individualize antenatal care.
               
Click one of the above tabs to view related content.