LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface roughness effect on fatigue strength of aluminum alloy using revised stress field intensity approach

Photo by glenncarstenspeters from unsplash

The fatigue strength of a component is known to highly depend on its surface quality, and it is thus necessary to develop a reliable and appropriate mathematical model for fatigue… Click to show full abstract

The fatigue strength of a component is known to highly depend on its surface quality, and it is thus necessary to develop a reliable and appropriate mathematical model for fatigue strength assessment that consider the effect of surface roughness. In this paper, different underlying physical mechanisms of the roughness effect at different regions of specimens were studied by fatigue testing of 7N01 aluminum alloy. For a quantitative analysis of the surface roughness effect, a revised stress field intensity approach for a fatigue strength assessment of microsized notches was proposed as a theoretical support. In the new model, a new form of weight function was built to adapt the characteristics of microsized notches. In addition, the effect of the field radius was fundamentally weakened on solution of the stress field intensity and the difficulty of fatigue failure region definition in the traditional method was overcome correspondingly in the proposed model, which made the calculated field strength accurate and objective. Finally, to demonstrate the validity of the revised approach quantitatively, specimens with conventionally sized notches were subjected to stress field intensity calculations. The results showed that the revised approach has satisfactory accuracy compared with the other two traditional approaches from the perspective of quantitative analysis.

Keywords: strength; stress field; fatigue strength; field; effect; field intensity

Journal Title: Scientific Reports
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.