Immunotherapy involving immune checkpoint inhibitors (ICIs) for enhancing immune system activation is promising for tumor management. However, the patients’ responses to ICIs are different. Here, we applied a non-negative matrix… Click to show full abstract
Immunotherapy involving immune checkpoint inhibitors (ICIs) for enhancing immune system activation is promising for tumor management. However, the patients’ responses to ICIs are different. Here, we applied a non-negative matrix factorization algorithm to establish a robust immune molecular classification system for colorectal cancer (CRC). We obtained data of 1503 CRC patients (training cohort: 488 from The Cancer Genome Atlas; validation cohort: 1015 from the Gene Expression Omnibus). In the training cohort, 42.8% of patients who exhibited significantly higher immunocyte infiltration and enrichment of immune response-associated signatures were subdivided into immune classes. Within the immune class, 53.1% of patients were associated with a worse overall prognosis and belonged to the immune-suppressed subclass, characterized by the activation of stroma-related signatures, genes, immune-suppressive cells, and signaling. The remaining immune class patients belonged to the immune-activated subclass, which was associated with a better prognosis and response to anti-PD-1 therapy. Immune-related subtypes were associated with different copy number alterations, tumor-infiltrating lymphocyte enrichment, PD-1/PD-L1 expression, mutation landscape, and cancer stemness. These results were validated in patients with microsatellite instable CRC. We described a novel immune-related class of CRC, which may be used for selecting candidate patients with CRC for immunotherapy and tailoring optimal immunotherapeutic treatment.
               
Click one of the above tabs to view related content.