The purposes are to develop the patent data profoundly, control the data access process effectively, and protect the patent information and content. The traditional patent review systems are analyzed. For… Click to show full abstract
The purposes are to develop the patent data profoundly, control the data access process effectively, and protect the patent information and content. The traditional patent review systems are analyzed. For the present patent data security and privacy protection technologies and algorithms, the patent information data are stored on different block nodes after data fragmentation using blockchain technology. Then the data are shared using the data encryption algorism. In this way, data access control can be restricted to particular users. Finally, a patent data protection scheme based on privacy protection is proposed. The security of the scheme and the model performance are verified through simulation experiments. The time required to encrypt 10 MB files with 64-bit and 128-bit data is 35 ms and 105 ms, respectively. The proposed re-encryption algorithm only needs 1 s to decrypt 64 KB data, and only 1% of the data needs asymmetric encryption. This greatly reduces the computational overhead of encryption. Results demonstrate that the system can effectively control the access methods of users, efficiently protect the personal privacy and patent content of patent applicants, and reduce the patent office cloud computing overhead using the local resources of branches. The distributed storage methods can reduce the cloud system interaction of the patent office, thereby greatly improving the speed of encryption and ensuring data security. Compared with the state of the art methods, the proposed patent data access and protection system based on blockchain technology have greater advantages in data security and model performance. The research results can provide a research foundation and practical value for the protection and review systems of patent data.
               
Click one of the above tabs to view related content.