LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Time-efficient fabrication method for 3D-printed microfluidic devices

Photo by jontyson from unsplash

Recent developments in 3D-printing technology have provided a time-efficient and inexpensive alternative to the fabrication of microfluidic devices. At present, 3D-printed microfluidic systems face the challenges of post-processing, non-transparency, and… Click to show full abstract

Recent developments in 3D-printing technology have provided a time-efficient and inexpensive alternative to the fabrication of microfluidic devices. At present, 3D-printed microfluidic systems face the challenges of post-processing, non-transparency, and being time consuming, limiting their practical application. In this study, a time-efficient and inexpensive fabrication method was developed for 3D-printed microfluidic devices. The material for 3D-printed microfluidic chips is Dowsil 732, which is used as a sealant or encapsulant in various industries. The curing time and surface hydrophobicity of the materials were evaluated. The results indicated that the surface of Dowsil 732 is hydrophilic. An optimization model of the direct ink writing method is proposed to establish a time-efficient and accurate fabrication method for microfluidic devices. The results indicate that the optimization model can effectively describe the change trend between printing speed, printing pressure, and channel wall accuracy, and the model accuracy rate exceeds 95%. Three examples—a micromixer, concentration gradient generator, and droplet generator—were printed to demonstrate the functionality and feasibility of the fabrication method.

Keywords: time; microfluidic devices; time efficient; fabrication; fabrication method; printed microfluidic

Journal Title: Scientific Reports
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.