Over the past decades, wildfire has imposed a considerable cost on natural resources and human lives. In many regions, annual wildfire trends show puzzling oscillatory patterns with increasing amplitudes for… Click to show full abstract
Over the past decades, wildfire has imposed a considerable cost on natural resources and human lives. In many regions, annual wildfire trends show puzzling oscillatory patterns with increasing amplitudes for burned areas over time. This paper aims to examine the potential causes of such patterns by developing and examining a dynamic simulation model that represents interconnected social and natural dynamics in a coupled system. We develop a generic dynamic model and, based on simulation results, postulate that the interconnection between human and natural subsystems is a source of the observed cyclical patterns in wildfires in which risk perception regulates activities that can result in more fire and development of vulnerable properties. Our simulation-based policy analysis points to a non-linear characteristic of the system, which rises due to the interconnections between the human side and the natural side of the system. This has a major policy implication: in contrast to studies that look for the most effective policy to contain wildfires, we show that a long-term solution is not a single action but is a combination of multiple actions that simultaneously target both human and natural sides of the system.
               
Click one of the above tabs to view related content.