LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic alterations in the lung microbiota in a rat model of lipopolysaccharide-induced acute lung injury

Photo from wikipedia

The lung microbiota have been found to be substantially altered in numerous pulmonary disorders, and crosstalk between the host pathophysiology and lung microbiota plays critical roles in the regulation of… Click to show full abstract

The lung microbiota have been found to be substantially altered in numerous pulmonary disorders, and crosstalk between the host pathophysiology and lung microbiota plays critical roles in the regulation of disease states. The aim of this study was to investigate dynamic changes in the lung microbiota during different stages of acute lung injury and acute respiratory distress syndrome (ALI/ARDS). Rats receiving an intraperitoneal administration of lipopolysaccharide (LPS) were sacrificed at 12 and 48 h after injection, and the hematological parameters, serum cytokine levels, and histological characteristics of the lung tissue and lung microbiota were assessed. After LPS injection, along with fluctuations of systemic cytokine levels and the onset and regression of pulmonary edema, the diversity, components, and functionalities of the pulmonary microbiota underwent significant dynamic changes. The volatility of the α-diversity indices narrowed after LPS injection, and the indices significantly decreased 48 h later. The abundance of 18 genera and functionality of adenosine triphosphate–binding cassette (ABC) transporters, pentose phosphate, and bacterial chemotaxis pathways were found to significantly differ between specified time points. Several significant correlations between the components and functionalities of the lung microbiota and indicative symptoms of ALI/ARDS were also observed. Brevibacterium was correlated with cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-10, and IL-6 and with hematological percentage of neutrophils (NEU%); Wnt, Notch, and chronic myeloid leukemia signaling pathways were correlated with IL-1β; mitogen-activated protein kinase (MAPK) signaling pathway–yeast was correlated with IL-10; and the pathways of ascorbate and aldarate metabolism and basal transcription factors were correlated with platelet-related indicators. The correlations between the lung microbiota and indicative symptoms of ALI/ARDS identified in this study support further investigation into the underlying mechanism of host–microbiota interactions during lung injury and repair.

Keywords: lung microbiota; lung injury; acute lung

Journal Title: Scientific Reports
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.