LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ternary intermetallic LaCoSi as a catalyst for N2 activation

Photo by mbrunacr from unsplash

AbstractActivating high-energy multiple bonds using earth-abundant metals is one of the most significant challenges in catalysis. Here, we show that LaCoSi—a ternary intermetallic compound—is an efficient and stable catalyst for… Click to show full abstract

AbstractActivating high-energy multiple bonds using earth-abundant metals is one of the most significant challenges in catalysis. Here, we show that LaCoSi—a ternary intermetallic compound—is an efficient and stable catalyst for N2 activation to produce NH3. The ammonia synthesis is significantly promoted by shifting the reaction bottleneck from the sluggish N2 dissociation to NHx formation, which few catalysts have achieved. Theoretical calculations reveal that the negatively charged cobalt mediates electron transfer from lanthanum to the adsorbed N2, which further reduces the activation barrier of N2 dissociation. Most importantly, the specific LaCoSi geometric configuration stabilizes the N2 adsorption with a strong exothermic effect, which dramatically decreases the apparent energy barrier of N2 activation. Consequently, LaCoSi shows a superior activity (1,250 μmol g−1 h−1), with a 60-fold increase over the activity of supported cobalt catalysts under mild reaction conditions (400 °C, 0.1 MPa).Ammonia synthesis is an energy-intensive process due to the high activation barrier for N2 dissociation. Here, Hosono and co-workers show that the intermetallic compound LaCoSi can lower the energy requirement for N2 activation and shift the rate-determining step of the process to NHx formation under mild conditions.

Keywords: ternary intermetallic; energy; lacosi; catalyst activation; activation

Journal Title: Nature Catalysis
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.