LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bimetallic synergy in cobalt–palladium nanocatalysts for CO oxidation

Photo from wikipedia

Bimetallic and multi-component catalysts typically exhibit composition-dependent activity and selectivity, and when optimized often outperform single-component catalysts. Here we used ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and in situ and ex… Click to show full abstract

Bimetallic and multi-component catalysts typically exhibit composition-dependent activity and selectivity, and when optimized often outperform single-component catalysts. Here we used ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and in situ and ex situ transmission electron microscopy (TEM) to elucidate the origin of composition dependence observed in the catalytic activities of monodisperse CoPd bimetallic nanocatalysts for CO oxidation. We found that the catalysis process induced a reconstruction of the catalysts, leaving CoOx on the nanoparticle surface. The synergy between Pd and CoOx coexisting on the surface promotes the catalytic activity of the bimetallic catalysts. This synergistic effect can be optimized by tuning the Co/Pd ratios in the nanoparticle synthesis, and it reaches a maximum at compositions near Co0.24Pd0.76, which achieves complete CO conversion at the lowest temperature. Our combined AP-XPS and TEM studies provide direct observation of the surface evolution of the bimetallic nanoparticles under catalytic conditions and show how this evolution correlates with catalytic properties.Catalysts are dynamic species, whose structure can change over the course of a reaction. Here, structural changes are mapped for cobalt–palladium nanoparticles during CO oxidation, showing a reconstruction to CoOx on palladium surfaces. Furthermore, the composition-dependent reconstruction can be correlated with the trend in catalytic activity.

Keywords: palladium; cobalt palladium; bimetallic synergy; nanocatalysts oxidation

Journal Title: Nature Catalysis
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.