LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Catalyst deactivation via decomposition into single atoms and the role of metal loading

Photo from wikipedia

In the high-temperature environments needed to perform catalytic processes, supported precious metal catalysts lose their activity severely over time. Generally, loss of catalytic activity is attributed to nanoparticle sintering or… Click to show full abstract

In the high-temperature environments needed to perform catalytic processes, supported precious metal catalysts lose their activity severely over time. Generally, loss of catalytic activity is attributed to nanoparticle sintering or processes by which larger particles grow at the expense of smaller ones. Here, by independently controlling particle size and particle loading using colloidal nanocrystals, we reveal the opposite process as an alternative deactivation mechanism: nanoparticles rapidly lose activity for methane oxidation by high-temperature decomposition into inactive single atoms. This deactivation route is remarkably fast, leading to severe loss of activity in as little as 10 min. Importantly, this deactivation pathway is strongly dependent on particle density and the concentration of support defect sites. A quantitative statistical model explains how, for certain reactions, higher particle densities can lead to more stable catalysts.Traditional modes of catalyst deactivation such as Ostwald ripening and particle migration and coalescence eventually lead to sintering and particle growth. Now, Cargnello and colleagues identify loading-dependent particle decomposition into single atoms as an important deactivation mechanism during methane combustion on colloidal Pd nanocrystals.

Keywords: catalyst deactivation; deactivation; decomposition single; particle; single atoms

Journal Title: Nature Catalysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.