LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Operando monitoring of temperature and active species at the single catalyst particle level

Photo from wikipedia

The development of improved catalysts requires insights into the relationship between catalytic activity and catalyst structure, including the underlying reaction mechanism. Here, we demonstrate a unique set of catalyst extrudate… Click to show full abstract

The development of improved catalysts requires insights into the relationship between catalytic activity and catalyst structure, including the underlying reaction mechanism. Here, we demonstrate a unique set of catalyst extrudate sensors that allow for the simultaneous detection of local temperature by luminescence thermometry, and of surface species by shell-isolated nanoparticle-enhanced Raman spectroscopy. This sensing approach was applied to the characterization of direct conversion of syngas into hydrocarbons and C2+ oxygenates over supported Rh and RhFe catalysts. Luminescence thermometry demonstrated a mismatch between the set temperature and the local catalyst temperature, with variations up to 40 °C. Furthermore, by investigating the surface species on varying extrudate and catalyst compositions, we identified tilted carbonyl species on the Rh/SiO2 interface that are probable precursors for the hydrogen-assisted CO dissociation. The implementation of extrudate catalyst sensors as a characterization tool provides a unique approach towards the further understanding of the relevant parameters in catalysis.Multi-modal approaches to simultaneously characterize different aspects of a reaction in situ are not readily accessible. Here, catalyst extrudates equipped with both luminescence thermometry and Raman spectroscopy sensors are introduced, providing an in-depth picture for the conversion of syngas on a supported rhodium catalyst.

Keywords: luminescence thermometry; temperature; monitoring temperature; spectroscopy; operando monitoring; catalyst

Journal Title: Nature Catalysis
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.