LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multiple claudin–claudin cis interfaces are required for tight junction strand formation and inherent flexibility

Photo from wikipedia

Tight junctions consist of a network of sealing strands that create selective ion permeability barriers between adjoining epithelial or endothelial cells. The current model for tight junction strands consists of… Click to show full abstract

Tight junctions consist of a network of sealing strands that create selective ion permeability barriers between adjoining epithelial or endothelial cells. The current model for tight junction strands consists of paired rows of claudins (Cldn) coupled by a cis interface (X-1) derived from crystalline Cldn15. Here we show that tight junction strands exhibit a broad range of lateral bending, indicating diversity in cis interactions. By combining protein–protein docking, coevolutionary analysis, molecular dynamics, and a mutagenesis screen, we identify a new Cldn–Cldn cis interface (Cis-1) that shares interacting residues with X-1 but has an ~ 17° lateral rotation between monomers. In addition, we found that a missense mutation in a Cldn14 that causes deafness and contributes stronger to Cis-1 than to X-1 prevents strand formation in cultured cells. Our results suggest that Cis-1 contributes to the inherent structural flexibility of tight junction strands and is required for maintaining permeability barrier function and hearing.Jun Zhao, Evan S. Krystofiak, and colleagues identified a new cis interface (Cis-1) essential for the formation of normal tight junctions. This study suggests that Cis-1 contributes to maintaining structural flexibility of tight junction strands for proper ion balance and hearing.

Keywords: cis; claudin; flexibility; formation; tight junction

Journal Title: Communications Biology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.