LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bedaquiline inhibits the yeast and human mitochondrial ATP synthases

Photo by paipai90 from unsplash

Bedaquiline (BDQ, Sirturo) has been approved to treat multidrug resistant forms of Mycobacterium tuberculosis. Prior studies suggested that BDQ was a selective inhibitor of the ATP synthase from M. tuberculosis.… Click to show full abstract

Bedaquiline (BDQ, Sirturo) has been approved to treat multidrug resistant forms of Mycobacterium tuberculosis. Prior studies suggested that BDQ was a selective inhibitor of the ATP synthase from M. tuberculosis. However, Sirturo treatment leads to an increased risk of cardiac arrhythmias and death, raising the concern that this adverse effect results from inhibition at a secondary site. Here we show that BDQ is a potent inhibitor of the yeast and human mitochondrial ATP synthases. Single-particle cryo-EM reveals that the site of BDQ inhibition partially overlaps with that of the inhibitor oligomycin. Molecular dynamics simulations indicate that the binding mode of BDQ to this site is similar to that previously seen for a mycobacterial enzyme, explaining the observed lack of selectivity. We propose that derivatives of BDQ ought to be made to increase its specificity toward the mycobacterial enzyme and thereby reduce the side effects for patients that are treated with Sirturo. Luo, Zhou et al. show that Bedaquiline (BDQ, Sirturo), approved to treat multi-drug-resistant tuberculosis, inhibits the yeast and human mitochondrial ATP synthases in addition to its intended target, the Mycobacterium tuberculosis ATP synthase. The structure of the mitochondrial ATP synthase bound to BDQ suggests a means to modify this inhibitor to increase its specificity for the M. tuberculosis enzyme, thereby reducing its side effects for patients.

Keywords: human mitochondrial; mitochondrial atp; bdq; atp synthases; tuberculosis; yeast human

Journal Title: Communications Biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.