LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

PRIME-3D2D is a 3D2D model to predict binding sites of protein–RNA interaction

Photo by mufidpwt from unsplash

Protein-RNA interaction participates in many biological processes. So, studying protein–RNA interaction can help us to understand the function of protein and RNA. Although the protein–RNA 3D3D model, like PRIME, was useful… Click to show full abstract

Protein-RNA interaction participates in many biological processes. So, studying protein–RNA interaction can help us to understand the function of protein and RNA. Although the protein–RNA 3D3D model, like PRIME, was useful in building 3D structural complexes, it can’t be used genome-wide, due to lacking RNA 3D structures. To take full advantage of RNA secondary structures revealed from high-throughput sequencing, we present PRIME-3D2D to predict binding sites of protein–RNA interaction. PRIME-3D2D is almost as good as PRIME at modeling protein–RNA complexes. PRIME-3D2D can be used to predict binding sites on PDB data (MCC = 0.75/0.70 for binding sites in protein/RNA) and transcription-wide (MCC = 0.285 for binding sites in RNA). Testing on PDB and yeast transcription-wide data show that PRIME-3D2D performs better than other binding sites predictor. So, PRIME-3D2D can be used to predict the binding sites both on PDB and genome-wide, and it’s freely available. Xie et al. report a new computational method PRIME-3D2D to predict binding sites of protein–RNA interaction by considering protein 3D structure and RNA 2D structure. It is freely available, performs better than other binding sites predictor and is as good as PRIME to model protein–RNA complex.

Keywords: rna interaction; prime 3d2d; predict binding; binding sites; protein rna

Journal Title: Communications Biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.