LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A multiscale 3D chemotaxis assay reveals bacterial navigation mechanisms

Photo by devilcoders from unsplash

How motile bacteria navigate environmental chemical gradients has implications ranging from health to climate science, but the underlying behavioral mechanisms are unknown for most species. The well-studied navigation strategy of… Click to show full abstract

How motile bacteria navigate environmental chemical gradients has implications ranging from health to climate science, but the underlying behavioral mechanisms are unknown for most species. The well-studied navigation strategy of Escherichia coli forms a powerful paradigm that is widely assumed to translate to other bacterial species. This assumption is rarely tested because of a lack of techniques capable of bridging scales from individual navigation behavior to the resulting population-level chemotactic performance. Here, we present such a multiscale 3D chemotaxis assay by combining high-throughput 3D bacterial tracking with microfluidically created chemical gradients. Large datasets of 3D trajectories yield the statistical power required to assess chemotactic performance at the population level, while simultaneously resolving the underlying 3D navigation behavior for every individual. We demonstrate that surface effects confound typical 2D chemotaxis assays, and reveal that, contrary to previous reports, Caulobacter crescentus breaks with the E. coli paradigm. Grognot & Taute use a 3D bacterial tracking routine to study the chemotactic behavior of E. coli and C. crescentus in a 3D microfluidic assay. After validating their approach on the well-characterized E. coli model system, they reveal that the chemotactic mechanism of the freshwater bacterium C. crescentus breaks with the E. coli paradigm.

Keywords: reveals bacterial; multiscale chemotaxis; chemotaxis assay; navigation; bacterial navigation; assay reveals

Journal Title: Communications Biology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.