LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Connectivity of EEG synchronization networks increases for Parkinson’s disease patients with freezing of gait

Photo from wikipedia

Freezing of gait (FoG), a paroxysmal gait disturbance commonly experienced by patients with Parkinson’s disease (PD), is characterized by sudden episodes of inability to generate effective forward stepping. Recent studies… Click to show full abstract

Freezing of gait (FoG), a paroxysmal gait disturbance commonly experienced by patients with Parkinson’s disease (PD), is characterized by sudden episodes of inability to generate effective forward stepping. Recent studies have shown an increase in beta frequency of local-field potentials in the basal-ganglia during FoG, however, comprehensive research on the synchronization between different brain locations and frequency bands in PD patients is scarce. Here, by developing tools based on network science and non-linear dynamics, we analyze synchronization networks of electroencephalography (EEG) brain waves of three PD patient groups with different FoG severity. We find higher EEG amplitude synchronization (stronger network links) between different brain locations as PD and FoG severity increase. These results are consistent across frequency bands (theta, alpha, beta, gamma) and independent of the specific motor task (walking, still standing, hand tapping) suggesting that an increase in severity of PD and FoG is associated with stronger EEG networks over a broad range of brain frequencies. This observation of a direct relationship of PD/FoG severity with overall EEG synchronization together with our proposed EEG synchronization network approach may be used for evaluating FoG propensity and help to gain further insight into PD and the pathophysiology leading to FoG.

Keywords: eeg synchronization; freezing gait; synchronization networks; parkinson disease; synchronization; brain

Journal Title: Communications Biology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.