LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oxygen-diffusion-driven oxidation behavior and tracking areas visualized by X-ray spectro-ptychography with unsupervised learning

Photo from wikipedia

Oxygen storage and release with oxygen diffusion in the bulk of the cerium–zirconium solid solution oxide Ce2Zr2Ox (x = 7–8), which possesses an atomically ordered arrangement of cerium and zirconium atoms, is… Click to show full abstract

Oxygen storage and release with oxygen diffusion in the bulk of the cerium–zirconium solid solution oxide Ce2Zr2Ox (x = 7–8), which possesses an atomically ordered arrangement of cerium and zirconium atoms, is the key to three-way exhaust catalysis. Oxygen storage proceeds via heterogeneous oxygen diffusion into the vacant sites of Ce2Zr2O7 particles, but the heterogeneous oxygen diffusion track is erased after oxygen storage in the Ce2Zr2Ox bulk. Here we show three-dimensional hard X-ray spectro-ptychography to clearly visualize the three-dimensional cerium valence map in Ce2Zr2Ox particles, and unsupervised learning reveals the concealed oxygen-diffusion-driven three-dimensional nanoscale cerium oxidation behavior and tracking areas inside individual mixed-oxide particles during the oxygen storage process. The described approach may permit the nanoscale chemical imaging of reaction tracking areas in solid materials.Cerium–zirconium solids are key materials in heterogeneous catalysis but understanding oxygen storage and diffusion in bulk samples is a challenge. Here the authors use three-dimensional hard X-ray spectro-ptychography and unsupervised learning to achieve nanoscale chemical imaging of reaction events.

Keywords: oxygen; diffusion; oxygen diffusion; ray spectro; spectro ptychography; oxygen storage

Journal Title: Communications Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.