LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A sustainable mesoporous palladium-alumina catalyst for efficient hydrogen release from N-heterocyclic liquid organic hydrogen carriers

Photo from wikipedia

Liquid organic hydrogen carriers (LOHC) are interesting hydrogen vectors which can exploit existing infrastructure. Specifically, N-heterocyclic compounds are attractive due to lower dehydrogenation enthalpy than homocyclic ones and demand a… Click to show full abstract

Liquid organic hydrogen carriers (LOHC) are interesting hydrogen vectors which can exploit existing infrastructure. Specifically, N-heterocyclic compounds are attractive due to lower dehydrogenation enthalpy than homocyclic ones and demand a viable palladium catalyst to guarantee high dehydrogenation activity at low temperatures and stability in recycle runs. Here, we employ one-pot solvent deficient precipitation yielding a mesoporous palladium-alumina. The prepared catalyst system offers higher hydrogen release capability by 20% than conventional palladium/γ-Al2O3 in the dehydrogenation of four different N-heterocyclic compounds at or below 250 °C. Futhermore, it shows negligible activity loss up to five consecutive runs for perhydro 2-(n-methylbenzyl)pyridine and perhydro 2-methylindole. Such dehydrogenation performance is caused by the solvent deficient environment that restricts palladium mobility by contiguous alumina particles and produces well-dispersed palladium phase with a higher density of (111) plane. Therefore, the reported synthesis method may contribute to the production of innovative dehydrogenation catalysts for LOHC compounds.Liquid organic hydrogen carriers such as N-heterocyclic compounds are interesting hydrogen vectors which could exploit existing infrastructure. Here, the authors report a mesoporous palladium-alumina catalyst system capable of dehydrogenating four different N-heterocycles with negligible activity loss over five runs.

Keywords: liquid organic; alumina; organic hydrogen; hydrogen; palladium; catalyst

Journal Title: Communications Chemistry
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.