LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrodynamic accumulation of small molecules and ions into cell-sized liposomes against a concentration gradient

Photo from wikipedia

In investigations of the emergence of protocells at the origin of life, repeatable and continuous supply of molecules and ions into the closed lipid bilayer membrane (liposome) is one of… Click to show full abstract

In investigations of the emergence of protocells at the origin of life, repeatable and continuous supply of molecules and ions into the closed lipid bilayer membrane (liposome) is one of the fundamental challenges. Demonstrating an abiotic process to accumulate substances into preformed liposomes against the concentration gradient can provide a clue. Here we show that, without proteins, cell-sized liposomes under hydrodynamic environment repeatedly permeate small molecules and ions, including an analogue of adenosine triphosphate, even against the concentration gradient. The mechanism underlying this accumulation of the molecules and ions is shown to involve their unique partitioning at the liposomal membrane under forced external flow in a constrained space. This abiotic mechanism to accumulate substances inside of the liposomal compartment without light could provide an energetically up-hill process for protocells as a critical step toward the contemporary cells. How small molecules could have accumulated within hypothetical protocells on the early Earth is an open question. Here automated microfluidic experiments provide evidence for abiotic accumulation of small molecules within cell-sized liposomes under hydrodynamic flow evoking a surface-mediated mechanism.

Keywords: accumulation; cell sized; concentration gradient; sized liposomes; small molecules; molecules ions

Journal Title: Communications Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.