LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Single-photon oxidation of C60 by self-sensitized singlet oxygen

Photo by unstable_affliction from unsplash

C60 is regarded as the most efficient singlet oxygen (1O2) photosensitizer. Yet, its oxidation by self-sensitized 1O2 remains unclear. The literature hints both oxygen and C60 must be at excited… Click to show full abstract

C60 is regarded as the most efficient singlet oxygen (1O2) photosensitizer. Yet, its oxidation by self-sensitized 1O2 remains unclear. The literature hints both oxygen and C60 must be at excited states to react, implying a two-photon process: first, oxygen is photosensitized (1C60•1O2); second, C60 is photoexcited (1C60*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{C}}_{60}^{\ast}$$\end{document}•1O2). However, this scheme is not plausible in a solvent, which would quench 1O2 rapidly before the second photon is absorbed. Here, we uncover a single-photon oxidation mechanism via self-sensitized 1O2 in solvents above an excitation energy of 3.7 eV. Using excitation spectroscopies and kinetics analysis, we deduce photoexcitation of a higher energy transient, 3C60**\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{C}}_{60}^{{\ast}{\ast}}$$\end{document}•3O2, converting to 1C60*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{C}}_{60}^{\ast}$$\end{document}•1O2. Such triplet-triplet annihilation, yielding two simultaneously-excited singlets, is unique. Additionally, rate constants derived from this study allow us to predict a C60 half-life of about a minute in the atmosphere, possibly explaining the scarceness of C60 in the environment. C60 is a highly efficient singlet oxygen (1O2) photosensitizer, but its oxidation by self-sensitized 1O2 has not been reported. Here, the authors uncover a single-photon oxidation mechanism via self-sensitized 1O2 in solvents above an excitation energy of 3.7 eV.

Keywords: photon; oxidation; usepackage; c60; self sensitized; document

Journal Title: Communications Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.