In quantum systems, signatures of multifractality are rare. They have been found only in the multiscaling of eigenfunctions at critical points. Here we demonstrate multifractality in the magnetic field-induced universal… Click to show full abstract
In quantum systems, signatures of multifractality are rare. They have been found only in the multiscaling of eigenfunctions at critical points. Here we demonstrate multifractality in the magnetic field-induced universal conductance fluctuations of the conductance in a quantum condensed matter system, namely, high-mobility single-layer graphene field-effect transistors. This multifractality decreases as the temperature increases or as doping moves the system away from the Dirac point. Our measurements and analysis present evidence for an incipient Anderson-localization near the Dirac point as the most plausible cause for this multifractality. Our experiments suggest that multifractality in the scaling behavior of local eigenfunctions are reflected in macroscopic transport coefficients. We conjecture that an incipient Anderson-localization transition may be the origin of this multifractality. It is possible that multifractality is ubiquitous in transport properties of low-dimensional systems. Indeed, our work suggests that we should look for multifractality in transport in other low-dimensional quantum condensed-matter systems.Multifractality is ubiquitous in classical systems but rare in quantum ones. Here the authors present observations demonstrating that universal conductance fluctuations in high-mobility single-layer graphene field-effect transistors are multifractal and may arise from Anderson-localization.
               
Click one of the above tabs to view related content.