LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spin-orbit coupling induced valley Hall effects in transition-metal dichalcogenides

Photo from wikipedia

In transition-metal dichalcogenides, electrons in the K-valleys can experience both Ising and Rashba spin-orbit couplings. In this work, we show that the coexistence of Ising and Rashba spin-orbit couplings leads… Click to show full abstract

In transition-metal dichalcogenides, electrons in the K-valleys can experience both Ising and Rashba spin-orbit couplings. In this work, we show that the coexistence of Ising and Rashba spin-orbit couplings leads to a special type of valley Hall effect, which we call spin-orbit coupling induced valley Hall effect. Importantly, near the conduction band edge, the valley-dependent Berry curvatures generated by spin-orbit couplings are highly tunable by external gates and dominate over the intrinsic Berry curvatures originating from orbital degrees of freedom under accessible experimental conditions. We show that the spin-orbit coupling induced valley Hall effect is manifested in the gate dependence of the valley Hall conductivity, which can be detected by Kerr effect experiments.The valley Hall effect in transition metal dichalcogenides has been studied as a potential mean to develop new electronic and optoelectronic devices. The authors theoretically demonstrate that valley Hall effect can be derived from spin degrees of freedom, which is distinct from the conventional orbital related type.

Keywords: transition metal; valley hall; effect; spin orbit; metal dichalcogenides

Journal Title: Communications Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.