LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chiral-induced switching of antiferromagnet spins in a confined nanowire

Photo from wikipedia

In the development of spin-based electronic devices, a particular challenge is the manipulation of the magnetic state with high speed and low power consumption. Although research has focused on the… Click to show full abstract

In the development of spin-based electronic devices, a particular challenge is the manipulation of the magnetic state with high speed and low power consumption. Although research has focused on the current-induced spin–orbit torque based on strong spin–orbit coupling, the charge-based and the torque-driven devices have fundamental limitations: Joule heating, phase mismatching, and overshooting. In this work, we investigate numerically and theoretically alternative switching scenario of antiferromagnetic insulator in one-dimensional confined nanowire sandwiched with two electrodes. As the electric field could break inversion symmetry and induce Dzyaloshinskii-Moriya interaction and pseudo-dipole anisotropy, the resulting spiral texture takes symmetric or antisymmetric configuration due to additional coupling with the crystalline anisotropy. Therefore, by competing two spiral states, we show that the magnetization reversal of antiferromagnets is realized, which is valid in ferromagnetic counterpart. Our finding provides promising opportunities to realize the rapid and energy-efficient electrical manipulation of magnetization for future spin-based electronic devices.The energy efficient control of magnetisation for memory applications is one of the most important challenges in the field of spintronics. The authors investigate theoretically the possibility of the switching a one-dimensional antiferromagnet using an external electric field.

Keywords: induced switching; spin; confined nanowire; chiral induced; switching antiferromagnet

Journal Title: Communications Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.