LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimizing higher-order network topology for synchronization of coupled phase oscillators

Photo from wikipedia

Networks in nature have complex interactions among agents. One significant phenomenon induced by interactions is synchronization of coupled agents, and the interactive network topology can be tuned to optimize synchronization.… Click to show full abstract

Networks in nature have complex interactions among agents. One significant phenomenon induced by interactions is synchronization of coupled agents, and the interactive network topology can be tuned to optimize synchronization. Previous studies showed that the optimized conventional network with pairwise interactions favors a homogeneous degree distribution of nodes for undirected interactions, and is always structurally asymmetric for directed interactions. However, the optimal control on synchronization for prevailing higher-order interactions is less explored. Here, by considering the higher-order interactions in a hypergraph and the Kuramoto model with 2-hyperlink interactions, we find that the network topology with optimized synchronizability may have distinct properties. For undirected interactions, optimized networks with 2-hyperlink interactions by simulated annealing tend to become homogeneous in the nodes’ generalized degree. We further rigorously demonstrate that for directed interactions, the structural symmetry can be preserved in the optimally synchronizable network with 2-hyperlink interactions. The results suggest that controlling the network topology of higher-order interactions leads to synchronization phenomena beyond pairwise interactions. Synchronization is a widespread emergent feature of complex systems. Here, the authors investigate the optimization of synchronization in phase oscillators with higher-order interactions, and find that optimized networks are more homogeneous in the nodes’ degree for undirected interactions, and for directed interactions they are generally structurally asymmetric, but can be symmetric, which differs from the pairwise case.

Keywords: topology; network topology; synchronization; higher order

Journal Title: Communications Physics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.