The aim of this study was to test the suitability of using indirect responses for modeling the effects of physical training on performance. We formulated four different models assuming that… Click to show full abstract
The aim of this study was to test the suitability of using indirect responses for modeling the effects of physical training on performance. We formulated four different models assuming that increase in performance results of the transformation of a signal secondary to the primary stimulus which is the training dose. The models were designed to be used with experimental data with daily training amounts ascribed to input and performance measured at several dates ascribed to output. The models were tested using data obtained from six subjects who trained on a cycle ergometer over a 15-week period. The data fit for each subject was good for all of the models. Goodness-of-fit and consistency of parameter estimates favored the model that took into account the inhibition of production of training effect. This model produced an inverted-U shape graphic when plotting daily training dose against performance because of the effect of one training session on the cumulated effects of previous sessions. In conclusion, using secondary signal-dependent response provided a framework helpful for modeling training effect which could enhance the quantitative methods used to analyze how best to dose physical activity for athletic performance or healthy living.
               
Click one of the above tabs to view related content.