LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inference of immune cell composition on the expression profiles of mouse tissue

Photo by ospanali from unsplash

Mice are some of the widely used experimental animal models for studying human diseases. Defining the compositions of immune cell populations in various tissues from experimental mouse models is critical… Click to show full abstract

Mice are some of the widely used experimental animal models for studying human diseases. Defining the compositions of immune cell populations in various tissues from experimental mouse models is critical to understanding the involvement of immune responses in various physiological and patho-physiological conditions. However, non-lymphoid tissues are normally composed of vast and diverse cellular components, which make it difficult to quantify the relative proportions of immune cell types. Here we report the development of a computational algorithm, ImmuCC, to infer the relative compositions of 25 immune cell types in mouse tissues using microarray-based mRNA expression data. The ImmuCC algorithm showed good performance and robustness in many simulated datasets. Remarkable concordances were observed when ImmuCC was used on three public datasets, one including enriched immune cells, one with normal single positive T cells, and one with leukemia cell samples. To validate the performance of ImmuCC objectively, thorough cross-comparison of ImmuCC predicted compositions and flow cytometry results was done with in-house generated datasets collected from four distinct mouse lymphoid tissues and three different types of tumor tissues. The good correlation and biologically meaningful results demonstrate the broad utility of ImmuCC for assessing immune cell composition in diverse mouse tissues under various conditions.

Keywords: immune cell; cell composition; expression; immucc; cell

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.