LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of Flow and Particle-Plastron Collision on the Longevity of Superhydrophobicity

Photo by maxwbender from unsplash

Among diverse methods for drag reduction, superhydrophobicity has shown considerable promise because it can produce a shear-free boundary without energy input. However, the plastron experiences a limited lifetime due to… Click to show full abstract

Among diverse methods for drag reduction, superhydrophobicity has shown considerable promise because it can produce a shear-free boundary without energy input. However, the plastron experiences a limited lifetime due to the dissolution of trapped air from surface cavities, into the surrounding water. The underwater longevity of the plastron, as it is influenced by environmental conditions, such as fine particles suspended in the water, must be studied in order to implement superhydrophobicity in practical applications. We present a proof-of-concept study on the kinetics of air loss from a plastron subjected to a canonical laminar boundary layer at Reδ = 1400 and 1800 (based on boundary layer thickness) with and without suspending 2 micron particles with density of 4 Kg/m3. To monitor the air loss kinetics, we developed an in situ non-invasive optical technique based on total internal reflection at the air-water interface. The shear flow at the wall is characterized by high resolution particle image velocimetry technique. Our results demonstrate that the flow-induced particle-plastron collision shortens the lifetime of the plastron by ~50%. The underlying physics are discussed and a theoretical analysis is conducted to further characterize the mass transfer mechanisms.

Keywords: plastron; particle plastron; superhydrophobicity; plastron collision; flow

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.