LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Plasmonically enhanced metal–insulator multistacked photodetectors with separate absorption and collection junctions for near-infrared applications

Photo by viazavier from unsplash

Plasmonically enhanced metal-insulator-metal (MIM) type structures are popular among perfect absorbers and photodetectors in which the field enhancement (for increased absorption) mechanism is directly coupled with collection (photocurrent) processes. In… Click to show full abstract

Plasmonically enhanced metal-insulator-metal (MIM) type structures are popular among perfect absorbers and photodetectors in which the field enhancement (for increased absorption) mechanism is directly coupled with collection (photocurrent) processes. In this work we propose a device structure that decouples absorption and collection parts for independent optimization. Double-stacked MIM (i.e. MIMIM) photodetectors operating in the near-infrared (NIR) spectrum up to 1200 nm wavelength are demonstrated. In the absorbing MIM (at the top side), we have used Silver nanoparticles resulting from dewetting, yielding a very low reflection of 10% for the most part of the 400 to 1000 nm wavelength range. An unconventional plasmonic material, Chromium, exhibits an absorption peak of over 80% at 1000 nm. The complete device has been fabricated and the photo-collection tunneling MIM (at the bottom) suppresses the leakage current by metal workfunction difference. An optimized stack consisting of Silver – Hafnium Oxide – Chromium – Aluminum Oxide – Silver nanoparticles (from bottom to top) yields a dark current of 7 nA and a photoresponsivity peak of 0.962 mA/W at 1000 nm and a full width at half maximum of 300 nm, while applied bias is 50 mV and device areas are 300 μm × 600 μm.

Keywords: absorption; absorption collection; enhanced metal; plasmonically enhanced; collection; metal insulator

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.