LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fractalkine-CX3CR1 signaling is critical for progesterone-mediated neuroprotection in the retina

Photo from wikipedia

Retinitis pigmentosa (RP) encompasses a group of retinal diseases resulting in photoreceptor loss and blindness. We have previously shown in the rd10 mouse model of RP, that rd10 microglia drive… Click to show full abstract

Retinitis pigmentosa (RP) encompasses a group of retinal diseases resulting in photoreceptor loss and blindness. We have previously shown in the rd10 mouse model of RP, that rd10 microglia drive degeneration of viable neurons. Norgestrel, a progesterone analogue, primes viable neurons against potential microglial damage. In the current study we wished to investigate this neuroprotective effect further. We were particularly interested in the role of fractalkine-CX3CR1 signaling, previously shown to mediate photoreceptor-microglia crosstalk and promote survival in the rd10 retina. Norgestrel upregulates fractalkine-CX3CR1 signaling in the rd10 retina, coinciding with photoreceptor survival. We show that Norgestrel-treated photoreceptor-like cells, 661Ws, and C57 explants modulate rd10 microglial activity in co-culture, resulting in increased photoreceptor survival. Assessment of Norgestrel’s neuroprotective effects when fractalkine was knocked-down in 661 W cells and release of fractalkine was reduced in rd10 explants confirms a crucial role for fractalkine-CX3CR1 signaling in Norgestrel-mediated neuroprotection. To further understand the role of fractalkine in neuroprotection, we assessed the release of 40 cytokines in fractalkine-treated rd10 microglia and explants. In both cases, treatment with fractalkine reduced a variety of pro-inflammatory cytokines. These findings further our understanding of Norgestrel’s neuroprotective properties, capable of modulating harmful microglial activity indirectly through photoreceptors, leading to increased neuroprotection.

Keywords: fractalkine; cx3cr1 signaling; fractalkine cx3cr1; photoreceptor; mediated neuroprotection

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.