We report the thermal annealing-induced formation of ring-like structure of Zn(II)-doped magnetite from iron alkoxide leaf-like nanoplate precusor. The phase, structure and morphology of magnetite nanorings were comprehensively characterized by… Click to show full abstract
We report the thermal annealing-induced formation of ring-like structure of Zn(II)-doped magnetite from iron alkoxide leaf-like nanoplate precusor. The phase, structure and morphology of magnetite nanorings were comprehensively characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscope, scanning electron microscope, and transmission electron microscope. The obtained Zn(II)-doped magnetite nanorings are of 13–20 nm in edge width, 70–110 nm in short axis length and 100–150 nm in long axis length. The growth mechanism was possibly due to a combined effect of decomposition of the organic component and diffusion growth. Zn(II)-doped magnetite nanorings delivered saturation magnetization of 66.4 emu/g and coercivity of 33 Oe at room temperature. In addition, the coatings containing Zn(II)-doped magnetite nanorings as fillers exhibit excellent microwave absorption properties with a maximum reflection loss of −40.4 dB and wide effective absorbing band obtained in coating with thin thickness of 1.50 mm.
               
Click one of the above tabs to view related content.