LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

pH-Controlled Cerium Oxide Nanoparticle Inhibition of Both Gram-Positive and Gram-Negative Bacteria Growth

Photo from wikipedia

Here, the antibacterial activity of dextran-coated nanoceria was examined against Pseudomonas aeruginosa and Staphylococcus epidermidis by varying the dose, the time of treatment, and the pH of the solution. Findings… Click to show full abstract

Here, the antibacterial activity of dextran-coated nanoceria was examined against Pseudomonas aeruginosa and Staphylococcus epidermidis by varying the dose, the time of treatment, and the pH of the solution. Findings suggested that dextran-coated nanoceria particles were much more effective at killing P. aeruginosa and S. epidermidis at basic pH values (pH = 9) compared to acidic pH values (pH = 6) due to a smaller size and positive surface charge at pH 9. At pH 9, different particle concentrations did cause a delay in the growth of P. aeruginosa, whereas impressively S. epidermidis did not grow at all when treated with a 500 μg/mL nanoceria concentration for 24 hours. For both bacteria, a 2 log reduction and elevated amounts of reactive oxygen species (ROS) generation per colony were observed after 6 hours of treatment with nanoceria at pH 9 compared to untreated controls. After 6 hours of incubation with nanoceria at pH 9, P. aeruginosa showed drastic morphological changes as a result of cellular stress. In summary, this study provides significant evidence for the use of nanoceria (+4) for a wide range of anti-infection applications without resorting to the use of antibiotics, for which bacteria are developing a resistance towards anyway.

Keywords: cerium oxide; gram; oxide nanoparticle; nanoparticle inhibition; controlled cerium; growth

Journal Title: Scientific Reports
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.