Electron spins permeate every aspect of science and influence numerous chemical processes: they underpin transition metal chemistry and biochemistry, mediate photosynthesis and photovoltaics and are paramount in the field of… Click to show full abstract
Electron spins permeate every aspect of science and influence numerous chemical processes: they underpin transition metal chemistry and biochemistry, mediate photosynthesis and photovoltaics and are paramount in the field of quantum information, to name but a few. Electron paramagnetic resonance (EPR) spectroscopy detects unpaired electrons and provides detailed information on structure and bonding of paramagnetic species. In this tutorial review, aimed at non-specialists, we provide a theoretical framework and examples to illustrate the vast scope of the technique in chemical research. Case studies were chosen to exemplify systematically the different interactions that characterize a paramagnetic centre and to illustrate how EPR spectroscopy may be used to derive chemical information.
               
Click one of the above tabs to view related content.