LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Theoretical design of three-dimensional non-fullerene acceptor materials based on an arylenediimide unit towards high efficiency organic solar cells

Photo by itfeelslikefilm from unsplash

Two non-fullerene acceptors with a three-dimensional structure based on the reported DBFI-T molecule (an arylenediimide-containing system) were theoretically modelled to study their performance as acceptor materials in organic solar cells… Click to show full abstract

Two non-fullerene acceptors with a three-dimensional structure based on the reported DBFI-T molecule (an arylenediimide-containing system) were theoretically modelled to study their performance as acceptor materials in organic solar cells (OSCs). Many performance indices were employed to judge the molecules designed by us on the basis of density functional theory/time-dependent density function theory (DFT/TDDFT). Compared with DBFT-T, the modelled molecule 2 has a larger density of states in the lowest unoccupied molecular orbitals and more low lying excited states in the anion, which greatly favors the charge separation process in OSCs. The comparison of charge separation/recombination rates (kCS/kCR) evaluated by considering the influence of low-lying excited states at the PSEHTT (donor)/acceptor interface suggests that molecules 1 and 2 have a higher short-circuit current density (Jsc) than DBFI-T, since they have higher kCS and lower kCR. Moreover, many other important parameters, such as the open circuit voltage, energetic driving force and absorption spectrum were also provided, which further illustrates the efficacy of molecules 1 and 2 in OSCs.

Keywords: organic solar; three dimensional; acceptor materials; non fullerene; acceptor; solar cells

Journal Title: New Journal of Chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.