A three-step strategy was employed to prepare a self-lubricating and anti-wear graphene oxide/nano-MoS2 (GO/nano-MoS2, abbreviated GMS) hybrid by chemical compounding as a novel multidimensional assembly. This development aims to overcome… Click to show full abstract
A three-step strategy was employed to prepare a self-lubricating and anti-wear graphene oxide/nano-MoS2 (GO/nano-MoS2, abbreviated GMS) hybrid by chemical compounding as a novel multidimensional assembly. This development aims to overcome the high friction coefficient of GO/polymer composites and to explore the variations in the tribological properties stemming from the different nanoparticles immobilized on the GO surface. The as-prepared GMS was incorporated into a polyimide (PI) matrix to yield GMS/PI composites by in situ polymerization. The mechanical, thermodynamic, surface, and tribological properties of the GMS/PI composites were investigated, and the synergistic effects of the abovementioned properties between nano-MoS2 and GO were discussed in detail. A homogeneous dispersion of GMS, a suppressive and protective effect of graphene sheets, a rolling friction effect of the detached nano-MoS2 particles, and a transfer film composed of MoS2 were achieved herein, contributing to the enhanced tribological properties. The differences in the enhancement effects of nanohybrids can be mainly attributed to two aspects: the intrinsic characteristics of the assembled nanoparticles and the combinational structure of the multidimensional assemblies.
               
Click one of the above tabs to view related content.