LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spatial heterogeneity can facilitate the target search of self-propelled particles.

Photo from wikipedia

A numerical investigation of the target search dynamics of self-propelled particles (SPPs) in heterogeneous environments is presented in this work. We show that the spatial heterogeneity has a dramatic effect… Click to show full abstract

A numerical investigation of the target search dynamics of self-propelled particles (SPPs) in heterogeneous environments is presented in this work. We show that the spatial heterogeneity has a dramatic effect on the target search dynamics of SPPs. The relative magnitude of the self-propulsion length lp and the radius of the circular domain Rc determines how the mean search time of SPPs τ depends on the area fraction of fixed obstacles ϕob. For lp < Rc, the target search process is diffusion-dominated so that a monotonic increase in τ with increasing ϕob is observed. For lp > Rc, τ is shown to be a non-monotonic convex function as a function of ϕob due to the interplay of the distribution-dominated and diffusion-dominated dynamic regimes. Furthermore, at fixed ϕob, τ shows a minimum upon increasing the self-propulsion velocity v0 of a SPP of a slow rotational diffusion when it searches for a target at low ϕob, while it decreases monotonically at high ϕob. The present work highlights that the introduction of spatial heterogeneity causes rich dynamic behaviors of a SPP searching for a target, and deepens our understanding of the transport of active matter in heterogeneous media.

Keywords: target search; spatial heterogeneity; self propelled; target

Journal Title: Soft matter
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.