A numerical investigation of the target search dynamics of self-propelled particles (SPPs) in heterogeneous environments is presented in this work. We show that the spatial heterogeneity has a dramatic effect… Click to show full abstract
A numerical investigation of the target search dynamics of self-propelled particles (SPPs) in heterogeneous environments is presented in this work. We show that the spatial heterogeneity has a dramatic effect on the target search dynamics of SPPs. The relative magnitude of the self-propulsion length lp and the radius of the circular domain Rc determines how the mean search time of SPPs τ depends on the area fraction of fixed obstacles ϕob. For lp < Rc, the target search process is diffusion-dominated so that a monotonic increase in τ with increasing ϕob is observed. For lp > Rc, τ is shown to be a non-monotonic convex function as a function of ϕob due to the interplay of the distribution-dominated and diffusion-dominated dynamic regimes. Furthermore, at fixed ϕob, τ shows a minimum upon increasing the self-propulsion velocity v0 of a SPP of a slow rotational diffusion when it searches for a target at low ϕob, while it decreases monotonically at high ϕob. The present work highlights that the introduction of spatial heterogeneity causes rich dynamic behaviors of a SPP searching for a target, and deepens our understanding of the transport of active matter in heterogeneous media.
               
Click one of the above tabs to view related content.