LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Successful PEGylation of hollow encapsulin nanoparticles from Rhodococcus erythropolis N771 without affecting their disassembly and reassembly properties.

Photo from wikipedia

We developed a hollow PEGylated encapsulin nanoparticle from Rhodococcus erythropolis N771. The hollow engineered encapsulin nanoparticles with His-Tag and Lys residues on the surface were constructed by means of genetic… Click to show full abstract

We developed a hollow PEGylated encapsulin nanoparticle from Rhodococcus erythropolis N771. The hollow engineered encapsulin nanoparticles with His-Tag and Lys residues on the surface were constructed by means of genetic recombination. The Lys residues on the particle surface were successfully PEGylated with a PEG derivative, methoxy-PEG-SCM. Consequently, we demonstrated that the hollow PEGylated engineered encapsulin nanoparticle could successfully disassemble or reassemble even after PEGylation in the presence or absence of a protein denaturing agent. The nanoparticle obtained in the present study has the potential to incorporate hydrophilic compounds in the internal cavity of the particle by reversibly controllable disassembly and reassembly. The hollow PEGylated encapsulin nanoparticle can be used as a drug carrier for the delivery of hydrophilic biopolymers in future medical applications.

Keywords: rhodococcus erythropolis; erythropolis n771; encapsulin nanoparticles; nanoparticle; hollow; disassembly reassembly

Journal Title: Biomaterials science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.