LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Zirconium arene triple-decker sandwich complexes: synthesis, electronic structure and bonding.

Photo from wikipedia

Reduction of a permethylpentalene zirconium(iv) chloride complex [η8-Pn*Zr(μ-Cl)3/2]2(μ-Cl)2Li·THFx with KC8 in benzene results in activation of the aromatic solvent to yield an "inverted sandwich" complex, [η8-Pn*Zr]2(μ-η6:η6-C6H6) (1). The reactions in… Click to show full abstract

Reduction of a permethylpentalene zirconium(iv) chloride complex [η8-Pn*Zr(μ-Cl)3/2]2(μ-Cl)2Li·THFx with KC8 in benzene results in activation of the aromatic solvent to yield an "inverted sandwich" complex, [η8-Pn*Zr]2(μ-η6:η6-C6H6) (1). The reactions in toluene, cumene, o-xylene and m-xylene also yield analogous solvent activated triple-decker sandwich complexes, which have been structurally characterised by single-crystal X-ray diffraction. Edge energies in the Zr K-edge XANES spectra are not distinguishable between 1 and formally Zr(ii) and Zr(iv) reference compounds, suggesting a broad edge structure. DFT calculations best describe the bonding in 1 as highly covalent with frontier molecular orbitals showing almost equal contributions from benzene and the Zr-permethylpentalene fragments.

Keywords: decker sandwich; triple decker; sandwich complexes; zirconium

Journal Title: Chemical communications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.