LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Growth of {100}-faceted NaFeTiO4 crystals with a tunable aspect ratio from a NaCl–Na2SO4 binary flux

Photo by francogio from unsplash

The controlled growth of needle-shaped and planar bar-shaped NaFeTiO4 crystals, a CaFe2O4-type structure, was carried out by a flux method using a NaCl–Na2SO4 binary flux. NaCl fluxes have been empirically… Click to show full abstract

The controlled growth of needle-shaped and planar bar-shaped NaFeTiO4 crystals, a CaFe2O4-type structure, was carried out by a flux method using a NaCl–Na2SO4 binary flux. NaCl fluxes have been empirically investigated for growing unique anisotropic crystal shapes. However, strategies for controlling the crystal morphology based on NaCl fluxes have not been established. In this study, Na2SO4 was added to a NaCl flux to supply O2− ions, which is essential for the dissolving ability of a metal oxide into ions, and the growth manner was systematically investigated as a function of flux composition. As a result, needle-shaped crystals were obtained from the pure NaCl flux with exposed {100} facets. Meanwhile, with the binary flux, the morphology of the crystals changed from a needle shape to a planar bar shape depending on the Na2SO4 content, where the aspect ratio of the {100} facets was increased by about ten times. It was found out that the aspect ratio of the {100} planes of NaFeTiO4 crystals can be controlled kinetically by the cooperative effect of Na+ ions and anionic species in the flux; Na+ ions stabilize the {100} facets and a high O2−/Cl− ratio increases the concentration of ions as a precursor for crystal growth to promote the growth in the direction, resulting in planar bar-shaped crystals. We believe that the morphological control regime demonstrated here in the growth of NaFeTiO4 crystals in a NaCl–Na2SO4 binary flux could be a useful idea in high temperature chemistry and for their desirable applications.

Keywords: nafetio4 crystals; na2so4 binary; flux; binary flux; growth; nacl na2so4

Journal Title: CrystEngComm
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.